The separation and recovery of useful organics from wastewater have been a promising alternative to tackling water pollution and resource shortages, while strategies that truly work have rarely been explored. Herein, a reversible CO2 triggered sol-gel state transformation mediated selective organics uptake-release system using a surface modified carbonitride (S-CN) is proposed and exhibits remarkable organics recovery performance from wastewater. Results show that CO2 can serve as a cross-linker for linking S-CN particles to form a hydrogel by electrostatic interaction and hydrogen bonding, which can be recycled to the pristine sol state simply by removing the cross-linked CO2 with Ar purging. The reversible sol-gel transformation achieves nearly complete uptake of valuable organics from wastewater with high selectivity at the first sol-to-gel stage through electrostatic interaction, hydrogen bonding, and π-π interactions together, and it recovers 90% of the organics uptaked by releasing them into a concentrated solution at the second gel-back-to-sol stage.
Read full abstract