The taste system extends beyond the oral cavity, with various taste receptors found in extraoral organs. Mice deficient in the taste receptor type 1 (TAS1R) family member, TAS1R3, and fed a high-fat, high-sugar diet showed high bone mass without altering food consumption. However, the underlying mechanisms, including the cell types responsible for TAS1R3 expression, remain unclear. Here, we demonstrate the expression and function of TAS1R3 in osteoclasts, which are responsible for bone resorption. The expression of Tas1r3 but not Tas1r1 or Tas1r2, is evoked during osteoclast differentiation. Osteoclastogenesis-related genes were downregulated in TAS1R3-deficient mice, whereas the opposite phenotypes were elicited by TAS1R3 overexpression. Contrary to the common heterodimerization with TAS1R1 or TAS1R2, TAS1R3 formed a homodimer that functioned to detect glucose, enhance p38 phosphorylation, and induce osteoclastogenesis. These results provide novel insights into the role of TAS1R3 in bone metabolism and suggest that TAS1R3 may be a viable target for therapeutic agents in bone metabolic diseases.
Read full abstract