Birefringent crystals hold a significant position in optical and optoelectronic fields due to their capability to control polarized light. Despite various chemical strategies devoted to designing birefringent crystals, it remains a challenge to switch and manipulate birefringence under physical stimuli. Here we present an unusual triple-state switching of birefringence in a 2D perovskite ferroelectric, (N-methylcyclohexylammonium)2PbCl4 (1), which exhibits two reversible phase transitions at 361 and 373 K. The in-plane birefringence of 1 (Δnbc) shows three distinctive states inside the bc plane, namely, the low-, high-, and zero-Δnbc states. Strikingly, a huge augmentation of Δnbc is solidly confirmed up to ∼400% between its low and high states, far beyond other birefringent materials. The origin of this triple-state switching of birefringence involves the variation of the ferroelastic strain and domain in the vicinity of the phase transition. As an entirely new mode of switching birefringence, this work facilitates the further development of new intelligent nonlinear optics.