The socioecological conditions of Mexican regions are conducive to the spread of vector-borne diseases. Although there are established treatment guidelines for dengue and rickettsiosis, diagnosis is complicated. The objective of this work was to identify epitopes of Rickettsia and dengue virus that could be used in serology screening against vector-borne diseases. For this, epitopes with high histocompatibility complex class II binding efficiency of OmpB protein of Rickettsia rickettsii and NS2B protein of dengue virus were identified in silico through a reverse vaccinology strategy. The selected epitopes were grouped into multipeptide sequences that were synthesized and immobilized in a nitrocellulose membrane to evaluate the reactivity sera from patients previously infected with dengue or Rickettsia. The evaluation of the sequences of the NS2B and OmpB proteins was performed with 60 sera previously diagnosed as positive or negative by the respective gold standard techniques. The dot blot technique was used for the antigenic evaluation of the peptides against these serum samples. Dot blot analysis correctly identified 85% of sera positive for rickettsiosis and 75% of sera positive for dengue. Experimental evidence from multipeptide sequences suggests their potential use in the development of diagnostic tests for dengue and rickettsiosis.
Read full abstract