Bacterial vaginosis due to Gardnerella vaginalis (GV) is one of the main causes of preterm birth. Antimicrobial function of the cervical glands prevents ascending pathogen infection. This study investigated the effect of GV on the cervical gland cells. We examined the correlation between GV and neutrophil elastase in the cervical mucous obtained from pregnant women’s clinical samples. Culture supernatants (sup) of GV and Lactobacillus crispatus (LC) were added to human immortalized cervical gland cells (EndoCx). Quantitative reverse transcription PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine the effects on the production of antimicrobial peptides (AMPs), secretory leukocyte peptidase inhibitor (SLPI), and Elafin. mRNA microarray analysis revealed the expression profile of GV-exposed EndoCx. Moreover, the antimicrobial activity of Elafin against LC and GV was investigated. In the clinical samples, neutrophil elastase was increased in the GV-positive cervical mucous. In an in vitro assay, RT-qPCR and ELISA showed that GV-sup enhanced the secretion of Elafin, but not SLPI, from EndoCx, whereas LC-sup did not. mRNA microarray assay and ELISA results demonstrated that GV-sup enhanced the proinflammatory pathway and interleukin (IL)− 8 secretion from EndoCx as well as cell adhesion and tight junction pathways. Moreover, GV-sup directly enhanced Elafin and IL-8 secretion from the cervical gland cells. In the GV-abundant vaginal flora, IL-8 level increased the neutrophil elastase activity and Elafin inhibited the elastase activity to protect from tissue damage and infection. Thus, the balance of IL-8-induced neutrophil and Elafin-induced antiprotease activities may be crucial in preterm labor.
Read full abstract