Direct detection of miRNA is currently limited by the complex amplification and reverse transcription processes of existing methods, leading to low sensitivity and high operational demands. Herein, we developed a CRISPR/Cas13a-mediated photoelectrochemical (PEC) biosensing platform for direct and sensitive detection of miRNA-21. The direct and specific recognition of target miRNA-21 by crRNA-21 eliminates the need for pre-amplification and reverse transcription of miRNA-21, thereby preventing signal distortion and enhancing the sensitivity and precision of target detection. When crRNA-21 binds to miRNA-21, it activates the trans-cleavage activity of CRISPR/Cas13a, leading to the non-specific cleavage of biotin-modified DNA with uracil bases (biotin-rU-DNA). This cleavage prevents the biotin-rU-DNA from being immobilized on the electrode surface. As a result, streptavidin cannot attach to the electrode via specific biotin binding, reducing spatial resistance and causing a positively correlated increase in the photocurrent response. This Cas-PEC biosensor has good analytical capabilities, linear responses between 10 fM and 10 nM, a minimum detection limit of 9 fM, and an excellent recovery rate in the analysis of real human serum samples. This work presented an innovative solution for detecting other biomarkers in bioanalysis and clinical diagnostics.
Read full abstract