Abstract

This study proposed a CRISPR/Cas13a-powered electrochemical multiplexed biosensor for detecting SARS-CoV-2 RNA strands. Current SARS-CoV-2 diagnostic methods, such as reverse transcription PCR (RT-PCR), are primarily based on nucleic acid amplification (NAA) and reverse transcription (RT) processes, which have been linked to significant issues such as cross-contamination and long turnaround times. Using a CRISPR/Cas13a system integrated onto an electrochemical biosensor, we present a multiplexed and NAA-free strategy for detecting SARS-CoV-2 RNA fragments. SARS-CoV-2 S and Orf1ab genes were detected in both synthetic and clinical samples. The CRISPR/Cas13a-powered biosensor achieved low detection limits of 2.5 and 4.5 ag/µL for the S and Orf1ab genes, respectively, successfully meeting the sensitivity requirement. Furthermore, the biosensor's specificity, simplicity, and universality may position it as a potential rival to RT-PCR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.