Salmonella species are ubiquitous human pathogens which pose a dangerous threat to the elderly and children worldwide. In this study, to develop a more efficient assay procedure for the rapid detection of Salmonella Typhimurium, an immunochromatographic strip assay was developed using immunoliposome (anti-Salmonella IgG-tagged) encapsulated with sulforhodamine B (SRB). The detection sensitivity of the developed immunochromatographic assay was compared with a commercial immunochromatographic test strip using colloidal gold nanoparticles. The liposomes were prepared through a reverse-phase evaporation method by using a lipid and phospholipid mixture and SRB, a fluorescence dye, which was encapsulated in the phospholipid bilayer. Furthermore, the outer surface of the SRB-encapsulated liposome was conjugated with antibody (affinity-purified polyclonal goat anti-Salmonella IgG) to form an immunoliposome (size, 223 nm), used as the analytical reagent in the developed immunoassay. For this strip assay, a plastic-backed nitrocellulose strip was immobilized with two antibody zones. The lower zone of the strip referred to Salmonella antigen capture zone (test line), while the other zone served as a positive control (control line). The lower zone was coated with affinity-purified polyclonal goat anti-Salmonella IgG, while the upper zone was coated with rabbit anti-goat IgG. During capillary migration of the wicking solution (diluted liposome and Salmonella culture, each 50 μl), Salmonella was captured with surface-bound immunoliposomes at the antigen capture zone, while the unbound liposomes migrated upward and bound to another zone. The color density of the antigen capture zone was directly proportional to the amount of S. Typhimurium in the test sample. As a result, the detection limit of the immunochromatographic strip assay developed in this study against S. Typhimurium was found to be 10(2) CFU/ml, which was significantly higher than the detection limit (10(7) CFU/ml) of the commercial immunochromatographic test strip assay.
Read full abstract