Let \({\mathcal L}\equiv-\Delta+V\) be the Schrodinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Holder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n ≥ 3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.