AbstractIn order to study the aerodynamic interference effects of single and multiple blunt bodies on the rectangular, reverse right angle, reverse inner convex arc, and reverse outer convex arc sections of serial bluff bodies, the finite volume method and the SIMPLE algorithm, the uniform viscous incompressible flow around blunt bodies at a subcritical Reynolds number was simulated by computational fluid dynamics (CFD) technology. The aerodynamic coefficient was analyzed, and the aerodynamic coefficients under various conditions (e.g., different wind angles of attack, chamfer dimensions, and cylinder spacing) were calculated. Results show that the drag and lift, as well as the torque coefficients, of each section of a single blunt decrease in accordance with the sequence of wind flow around the rectangular, reverse right angle, reverse inner convex arc, and reverse outer convex arc sections at different wind angles of attack. The drag and lift, as well as the torque coefficient, of the reverse right angl...
Read full abstract