Deep cross-modal retrieval techniques have recently achieved remarkable performance, which also poses severe threats to data privacy potentially. Nowadays, enormous user-generated contents that convey personal information are released and shared on the Internet. One may abuse a retrieval system to pinpoint sensitive information of a particular Internet user, causing privacy leakage. In this article, we propose a data-centric Proactive Privacy-preserving Cross-modal Learning algorithm that fulfills the protection purpose by employing a generator to transform original data into adversarial data with quasi-imperceptible perturbations before releasing them. When the data source is infiltrated, the inside adversarial data can confuse retrieval models under the attacker’s control to make erroneous predictions. We consider the protection under a realistic and challenging setting where the prior knowledge of malicious models is agnostic. To handle this, a surrogate retrieval model is instead introduced, acting as the target to fool. The whole network is trained under a game-theoretical framework, where the generator and the retrieval model persistently evolve to fight against each other. To facilitate the optimization, a Gradient Reversal Layer module is inserted between two models, enabling a one-step learning fashion. Extensive experiments on widely used realistic datasets prove the effectiveness of the proposed method.
Read full abstract