Living in a social dominance hierarchy presents different benefits and challenges for dominant and subordinate males and females, which might in turn affect their cognitive needs. Despite the extensive research on social dominance in group-living species, there is still a knowledge gap regarding how social status impacts brain morphology and cognitive abilities. Here, we tested male and female dominants and subordinates of Neolamprologus pulcher, a social cichlid fish species with size-based hierarchy. We ran three executive cognitive function tests for cognitive flexibility (reversal learning test), self-control (detour test), and working memory (object permanence test), followed by brain and brain region size measurements. Performance was not influenced by social status or sex. However, dominants exhibited a brain-body slope that was relatively steeper than that of subordinates. Furthermore, individual performance in reversal learning and detour tests correlated with brain morphology, with some trade-offs among major brain regions like telencephalon, cerebellum, and optic tectum. As individuals' brain growth strategies varied depending on social status without affecting executive functions, the different associated challenges might yield a potential effect on social cognition instead. Overall, the findings highlight the importance of studying the individual and not just species to understand better how the individual's ecology might shape its brain and cognition.
Read full abstract