The 5-hydroxytryptamine 2A (5-HT(2A)) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by 5-hydroxytryptamine in both peripheral and central tissues. Despite its broad physiological importance, our current understanding of 5-HT(2A) receptor regulation is incomplete. We recently reported the novel finding that the multifunctional ERK effector ribosomal S6 kinase 2 (RSK2) physically interacts with the 5-HT(2A) receptor third intracellular (i3) loop and modulates receptor signaling (Sheffler, D. J., Kroeze, W. K., Garcia, B. G., Deutch, A. Y., Hufeisen, S. J., Leahy, P., Bruning, J. C., and Roth, B. L. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 4717-4722). We report here that RSK2 directly phosphorylates the 5-HT(2A) receptor i3 loop at the conserved residue Ser-314, thereby modulating 5-HT(2A) receptor signaling. Furthermore, these studies led to the discovery that RSK2 is required for epidermal growth factor-mediated heterologous desensitization of the 5-HT(2A) receptor. We arrived at these conclusions via multiple lines of evidence, including in vitro kinase experiments, tandem mass spectrometry, and site-directed mutagenesis. Our findings were further validated using phospho-specific Western blot analysis, metabolic labeling studies, and whole-cell signaling experiments. These results support a novel regulatory mechanism in which a downstream effector of the ERK/MAPK pathway directly interacts with, phosphorylates, and modulates signaling of the 5-HT(2A) serotonin receptor. To our knowledge, these findings are the first to demonstrate that a downstream member of the ERK/MAPK cascade phosphorylates a GPCR as well as mediates cross-talk between a growth factor and a GPCR.
Read full abstract