The properties of edible films derived from corn starch (CS) and methylcellulose (MC) supplemented with fireweed extract (FE; 0.0125-0.05% w/w) were analyzed. Due to their more crystalline structure, the MC films were significantly stronger (~26 MPa) than the CS films (~4 MPa). In turn, CS produced films with lower water vapor permeability (WVP, 50.12-51.74 vs. 56.52-59.10 g mm m−2 d−1 kPa−1). The hydrothermally-disrupted starch granules contributed to high roughness and opacity of the CS films. The FE-supplemented films exhibited an intensive yellow color and improved the UV-absorbing effect. FE delayed starch retrogradation, as indicated by the reduced crystallinity and slightly improved transparency of the CS films. Incorporation of FE significantly enhanced the released radical scavenging activity (RSA) of the films, while did not affect the WVP and mechanical properties. Due to better FE-trapping capacity, the CS-based films exhibited lower antioxidant activity (RSA60min = 2.21-19.75%) as compared to the MC counterparts (RSA60min = 4.87-38.31%).