The coal-fired power sector is facing unprecedented pressure due to the shift to low-carbon energy sources and the need to prevent climate change. It is imperative to incorporate advanced technologies into conventional coal-fired power plants to enhance their efficiency, flexibility, and environmental sustainability. One advantage of post-combustion CCS methods is that they may be retrofitted into power plants that are already in place. The goal of this work is to design a CO2 flue gas cleaning retrofit system that will meet the most stringent air quality regulations in an operational coal power station in Southern Africa. It will operate and expedite the removal of undesired gas (CO2) in order to attain ideal requirements for air quality in one of Southern Africa's current coal-fired power plants, the Duvha Coal Power Plant. This study is based on chemical absorption, and explores the mechanistic design of the scrubber, which was accomplished through simple computations and Ansys simulations. The approach for developing a wet CO2 scrubber and LSTG system is based on chemical absorption and is integrated with a pilot plant. The results of the parametric study provide a foundation for a comprehensive industrial system design for South Africa's coal-powered industry. The results show that the scrubber's cylinder height and diameter can be used for an LSTG system and are appropriate for CO2 gas flow and capture. The application of the suggested scrubber design and the LTSG's contributions will allow the coal power station to operate with minimal GHG emissions released into the atmosphere. Instead of shutting down coal power facilities, this cleaning system that completely absorbs CO2 emissions can be used to maintain a robust power infrastructure, rather than being phased out. This will boost the power plant's efficiency over its initial operating efficiency and benefit the nation's economy and the power industry.