The distribution of myomodulin-like immunoreactivity is described for the brain and retrocerebral complex of an insect, the locust, Schistocerca gregaria. The locust brain contains 70-100 neuronal cell bodies and numerous neuropilar processes exhibiting myomodulin-like immunoreactivity. The most marked feature of the staining is a group of lateral tritocerebral neurones that form a highly immunoreactive tract that gives rise to a complex neuropile of stained processes in the dorsal tritocerebrum. This tract continues dorsally and bifurcates into a major branch that exists the brain via nervi corpora cardiaca 1 (NCC1) to innervate the corpora cardiaca and the corpora allata. A minor branch, consisting of several individual axons, combines with immunoreactive processes from the ventral nerve cord and generates a complex immunoreactive neuropile in the anterior and posterior regions of the protocerebrum. Immunoreactive processes are also found in the structured neuropile of the central body complex. Immunoreactive cell bodies are also found in the antennal lobes, in the lateral margins of the protocerebrum, in the optic lobes, and in a few cells in the pars intercerebralis. The results suggest that myomodulin-like neuropeptides may play roles as central neurotransmitters or neuromodulators in insects as well as being released into the circulation as neurohormones or acting as releasing agents for neurohormones in neurohaemal areas. They also further strengthen the idea that myomodulins, which were first identified in molluscs, may represent another interphyletic family of neuropeptides.
Read full abstract