Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed (SSWS) from HH-polarized Sentinel-1 (S1) SAR images. The Polarization Ratio (PR) models combined with the CMOD5.N Geophysical Model Function (GMF) is used for SSWS retrieval from the HH-polarized SAR data. We compared different PR models developed based on previous C-band SAR data in HH-polarization for their applications to the S1 SAR data. The recently proposed CMODH, i.e., retrieving SSWS directly from the HH-polarized S1 data is also validated. The results indicate that the CMODH model performs better than results achieved using the PR models. We proposed a neural network method based on the backward propagation (BP) neural network to retrieve SSWS from the S1 HH-polarized data. The SSWS retrieved using the BP neural network model agrees better with the buoy measurements and ASCAT dataset than the results achieved using the conventional methods. Compared to the buoy measurements, the bias, root mean square error (RMSE) and scatter index (SI) of wind speed retrieved by the BP neural network model are 0.10 m/s, 1.38 m/s and 19.85%, respectively, while compared to the ASCAT dataset the three parameters of training set are −0.01 m/s, 1.33 m/s and 15.10%, respectively. It is suggested that the BP neural network model has a potential application in retrieving SSWS from Sentinel-1 images acquired at HH-polarization.
Read full abstract