Precipitable water vapor (PWV) is a crucial parameter of Earth’s atmosphere, with its spatial and temporal variations significantly impacting Earth’s energy balance and weather patterns. Particularly during meteorological disasters such as typhoons, PWV and other meteorological parameters exhibit dramatic changes. Studying the response relationship between PWV and typhoon events, alongside other meteorological parameters, is essential for meteorological and climate analysis and research. To this end, this paper proposes a method for analyzing the response relationship between PWV and meteorological parameters based on Wavelet Coherence (WTC). Specifically, PWV and relevant meteorological parameters were obtained using GNSS and ERA5 data, and the response relationships between PWV and different meteorological parameters before and after typhoon events were studied in time–frequency domain. Considering that many GNSS stations are not equipped with meteorological monitoring equipment, this study interpolated meteorological parameters based on ERA5 data for PWV retrieval. In the experimental section, the accuracy of ERA5 meteorological parameters and the accuracy of PWV retrieval based on ERA5 were first analyzed, verifying the feasibility and effectiveness of this approach. Subsequently, using typhoon Lekima as a case study, data from six GNSS stations affected by the typhoon were selected, and the corresponding PWV was retrieved using ERA5. The WTC method was then employed to analyze the response relationship between PWV and meteorological parameters before and after the typhoon’s arrival. The results show that the correlation characteristics between PWV and pressure can reveal different stages before and after the typhoon passes, while the local characteristics between PWV and temperature better reflect regional precipitation trends.
Read full abstract