Abstract

Qinghai Province is situated deep in inland China, on the Qinghai-Tibet plateau, and it has unique climate change characteristics. Therefore, understanding the temporal and spatial distributions of water vapor in this region can be of great significance. The present study applied global navigation satellite system (GNSS) technology to retrieve precipitable water vapor (PWV) in Qinghai and analyzed its relationship with rainfall and drought. Firstly, radiosonde (RS) data is used to verify the precision of the surface pressure (P) and temperature (T) from the fifth-generation atmosphere reanalysis data set (ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as the zenith troposphere delay (ZTD), calculated based on the data from continuously operating reference stations (CORS) in Qinghai. Secondly, a regional atmospheric weighted mean temperature (Tm) (QH-Tm) model was developed for Qinghai based on P, T, and relative humidity, as well as the consideration of the influence of seasonal changes in Tm. Finally, the PWV of each CORS in Qinghai was calculated using the GNSS-derived ZTD and ERA5-derived meteorological data, and its relationship with rainfall and drought was evaluated. The results show that the ERA5-derived P and T have high precision, and their average root mean square (RMS), mean absolute error (MAE) and bias were 1.06/0.85/0.01 hPa and 2.98/2.42/0.03 K, respectively. The RMS, MAE and bias of GNSS-derived ZTD were 13.2 mm, 10.3 mm and −1.8 mm, respectively. The theoretical error for PWV was 1.98 mm; compared with that of RS- and ERA5-derived PWV, the actual error was 2.69 mm and 2.16 mm, respectively. In addition, the changing trend of GNSS-derived PWV was consistent with that of rainfall events, and it closely and negatively correlated with the standardized precipitation evapotranspiration index. Therefore, the PWV retrieved from GNSS data in this study offers high precision and good feasibility for practical applications; thus, it can serve as a crucial tool for investigating water vapor distribution and climate change in Qinghai.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call