Aboveground biomass (AGB) is a vital indicator for studying carbon sinks in forest ecosystems. Semiarid forests harbor substantial carbon storage but received little attention due to the high spatial–temporal heterogeneity that complicates the modeling of AGB in this environment. This study assessed the performance of different data sources (annual monthly time-series radar was Sentinel-1 [S1]; annual monthly time series optical was Sentinel-2 [S2]; and single-temporal airborne light detection and ranging [LiDAR]) and seven prediction approaches to map AGB in the semiarid forests on the border between Gansu and Qinghai Provinces in China. Five experiments were conducted using different data configurations from synthetic aperture radar backscatter, multispectral reflectance, LiDAR point cloud, and their derivatives (polarimetric combination indices, texture information, vegetation indices, biophysical features, and tree height- and canopy-related indices). The results showed that S2 acquired better prediction (coefficient of determination [R2]: 0.62–0.75; root mean square error [RMSE]: 30.08–38.83 Mg/ha) than S1 (R2: 0.24–0.45; RMSE: 47.36–56.51 Mg/ha). However, their integration further improved the results (R2: 0.65–0.78; RMSE: 28.68–35.92 Mg/ha). The addition of single-temporal LiDAR highlighted its structural importance in semiarid forests. The best mapping accuracy was achieved by XGBoost, with the metrics from the S2 and S1 time series and the LiDAR-based canopy height information being combined (R2: 0.87; RMSE: 21.63 Mg/ha; relative RMSE: 14.45%). Images obtained during the dry season were effective for AGB prediction. Tree-based models generally outperformed other models in semiarid forests. Sequential variable importance analysis indicated that the most important S1 metric to estimate AGB was the polarimetric combination indices sum, and the S2 metrics were associated with red-edge spectral regions. Meanwhile, the most important LiDAR metrics were related to height percentiles. Our methodology advocates for an economical, extensive, and precise AGB retrieval tailored for semiarid forests.
Read full abstract