The foveal-feedback mechanism supports peripheral object recognition by processing information about peripheral objects in foveal retinotopic visual cortex. When a foveal object is asynchronously presented with a peripheral target, peripheral discrimination performance is affected differently depending on the relationship between the foveal and peripheral objects. However, it is not clear whether the delayed foveal input competes for foveal resources with the information processed by foveal-feedback or masks it. In the current study, we tested these hypotheses by measuring the effect of foveal noise at different spatial frequencies on peripheral discrimination of familiar and novel characters. Our results showed that the impairment of foveal-feedback was strongest for low-spatial frequency noise. A control experiment revealed that for spatially overlapping noise, low-spatial frequencies were more effective than medium-spatial frequencies in the periphery, but vice versa in the fovea. This suggests that the delayed foveal input selectively masks foveal-feedback when it is sufficiently similar to the peripheral information. Additionally, this foveal masking was periodic as evidenced by behavioral oscillations at around 5 Hz. Thus, we conclude that foveal-feedback supports peripheral discrimination of familiar and novel objects by periodically processing peripheral object information.
Read full abstract