Abstract

People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However, differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo. Here, we probed the neural basis of these deficits using fMRI and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a difference-of-Gaussian model to capture the center-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex, as well as a reduction in size and depth of the inhibitory surround in V1, V2, and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ.SIGNIFICANCE STATEMENT People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However, associated differences in the functional architecture of visual cortex neurons have yet to be reported in vivo. We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the center-surround pRF configuration and ultimately explain the range of visual deficits experienced in SZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.