The interplay between metabolic signaling and stem cell biology has gained increasing attention, though the underlying molecular mechanisms remain incompletely elucidated. In this study, we identify and characterize the role of adapalene (ADA), a retinoic acid receptor (RAR) agonist, in modulating the migration behavior of hematopoietic stem cells (HSCs). Our initial findings reveal that ADA treatment suppresses hematopoietic stem and progenitor cell (HSPC) mobilization induced by AMD3100 and G-CSF. Furthermore, we demonstrate that ADA treatment upregulates the surface expression of CXCR4 on HSPCs, resulting in enhanced chemotaxis towards CXCL12. Mechanistically, our study suggests that ADA enhances CXCR4 surface presentation without increasing CXCR4 mRNA levels, pointing towards a non-canonical role of RAR signaling in regulating intracellular trafficking of CXCR4. In vivo experiments show that ADA administration significantly enhances HSC homing efficiency. Additionally, competitive transplantation assays indicate a marked increase in donor chimerism following ADA treatment. These findings highlight the critical role of retinoic acid signaling in regulating HSC homing and suggest its potential for advancing novel HSC-based therapeutic strategies.