Neovascularization within the eye contributes to visual loss in several ocular diseases, the most common of which are proliferative diabetic retinopathy, neovascular age-related macular degeneration, and retinopathy of prematurity. Together, these three diseases afflict persons in all stages of life from birth through late adulthood and account for most instances of legal blindness. Retinopathy of prematurity (ROP) occurs in premature neonates. Normally, the retina becomes completely vascularized at full term. In the premature baby, the retina remains incompletely vascularized at the time of birth. Rather than continuing in a normal fashion, vasculogenesis in the premature neonatal retina becomes disrupted. Abnormal new proliferating vessels develop at the juncture of vascularized and avascular retina. These abnormal new vessels grow from the retina into the vitreous, resulting in hemorrhage and tractional detachment of the retina. Although laser ablation of avascular peripheral retina may halt the neovascular process if delivered in a timely and sufficient manner, some premature babies nevertheless go on to develop retinal detachment. Surgical methods for treating ROP-related retinal detachments in neonates have limited success at this time because of unique problems associated with this surgery, such as the small size of the eyes and the extremely firm vitreoretinal attachments in neonates. Diabetic retinopathy is the leading cause of blindness in adults of working age. In persons with diabetes mellitus, retinal capillary occlusions develop, creating areas of ischemic retina. Retinal ischemia serves as a stimulus for neovascular proliferations that originate from pre-existing retinal venules at the optic disk or elsewhere in the retina posterior to the equator. Severe visual loss in proliferative diabetic retinopathy (PDR) results from vitreous hemorrhage and tractional retinal detachment. Again, laser treatment (panretinal photocoagulation to ischemic retina) may arrest the progression of neovascular proliferations in this disease but only if delivered in a timely and sufficiently intense manner. Some diabetic patients, either from lack of ophthalmic care or despite adequate laser treatment, go on to sustain severe visual loss secondary to PDR. Vitrectomy surgery can reduce but not eliminate severe visual loss in this disease. Age-related macular degeneration is the leading cause of severe visual loss in persons over 65 years old. In contrast to ROP and PDR, in which neovascularization emanates from the retinal vasculature and extends into the vitreous cavity, AMD is associated with neovascularization originating from the choroidal vasculature and extending into the subretinal space. Choroidal neovascularization causes severe visual loss in AMD patients because it occurs in the macula, the area of retina responsible for central vision. The stimuli which lead to choroidal neovascularization are not understood. Laser ablation of the choroidal neovascularization may stabilize vision in selected patients. However, only 10% to 15% of patients with neovascular AMD have lesions judged to be appropriate for laser photocoagulation according to current criteria. Retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration are but three of the ocular diseases which can produce visual loss secondary to neovascularization. Others include sickle cell retinopathy, retinal vein occlusion, and certain inflammatory diseases of the eye. These, however, account for a much smaller proportion of visual loss caused by ocular neovascularization. Additional treatments beyond laser photocoagulation and vitrectomy surgery are needed to improve outcomes in these patients. Pharmacological antiangiogenic therapy can potentially assist in prevention of the onset or progression of ocular neovascularization and is a current goal of many research laboratories and pharmaceutical companies.