BackgroundApoptosis of photoreceptors plays a critical role in the vision loss caused by retinal detachment (RD). Pharmacologic inhibition of photoreceptor cell death may prevent RD. This study investigated the role of GADD153 that participates in endoplasmic reticulum (ER) stress-mediated apoptosis of photoreceptor cells after RD.MethodsRetinal detachment was created in Wistar rats by subretinal injection of hyaluronic acid. The rats were then randomly divided into four groups: normal control group, RD group, GADD153 RNAi group and vehicle group. RNA interference of GADD153 was performed using short hairpin RNA (shRNA). Expressions of GADD153 mRNA and protein were examined by RT-PCR and Western blotting analysis, respectively. GADD153 protein distribution in the retinal cells was observed using immunofluorescence confocal laser scanning microscopy. Apoptosis of retinal cells was determined by TdT-mediated fluorescein-16-dUTP nick-end labeling (TUNEL) assay.ResultsLentivirus GADD153 shRNA with the most effective silencing effect was chosen for in vivo animal study and was successfully delivered into the retinal tissues. GADD153 mRNA and protein expressions in GADD153 RNAi group were significantly lower than those in the RD group. Silencing of GADD153 by RNAi protected photoreceptors from ER stress-induced apoptosis.ConclusionER stress-mediated pathway is involved in photoreceptor cell apoptosis after RD. GADD153 is a key regulatory molecule regulating ER-stress pathways and plays a crucial role in the apoptosis of photoreceptor cells after RD.
Read full abstract