Senescence marker protein 30 (SMP30) is an aging-related protein that participates in the regulation of tissue damage under various pathological conditions. However, the role of SMP30 in mediating high glucose (HG)-induced injury of retinal ganglion cells (RGCs) has not been fully determined. We found that SMP30 expression declined during HG stimulation in RGCs. Cellular functional studies showed that the up-regulation of SMP30 dramatically prohibited HG-evoked apoptosis, oxidative stress and inflammatory response in RGCs. Mechanism research reported that SMP30 overexpression led to the enhancement of nuclear factor erythroid 2-related factor (Nrf2) activation in HG-stimulated RGCs. Moreover, SMP30 overexpression enhanced the phosphorylation of Akt and glucogen synthase kinase-3β (GSK-3β), and the suppression of Akt markedly abolished SMP30-mediated Nrf2 activation in HG-stimulated RGCs. Additionally, the suppression of Nrf2 substantially reversed SMP30-overexpression-induced anti-HG injury effects in RGCs. Overall, these findings suggest that SMP30 protects against HG injury of RGCs by potentiating Nrf2 through regulation of the Akt/GSK-3β pathway. Our work underscores that SMP30/Akt/GSK-3β/Nrf2 may exert a vital role in mediating the injury of RGCs during diabetic retinopathy.