The physical properties of various white bread doughs made from the flours of ‘Harunoakebono’ and 10 genotypes of its near-isogenic lines with different compositions of high molecular weight glutenin subunit (HMWGs) were measured with the Creep method based on a Maxwell–2–element model. The expansion stress in the proofing process of various doughs was obtained by a numerical calculation method. The results indicated that doughs with high elastic characteristics, namely large relaxation time (τ0) and regularity coefficient of viscosity (ηN), have high dough stress throughout the proofing process and high stress at the proofing end (σend) and conversely, the low elastic dough with the small τ0 and ηN has the completely opposite tendency. This study also showed that there are significantly high correlations between the calculated σend and bread-making quality (BMQ) such as gas retention of dough and specific loaf volume (SLV). These results showed that BMQ, represented by SLV, of various white bread doughs were greatly influenced by the dough’s physical properties, especially τ0 and ηN, which change with differences in the compositions of the HMWGs.