Many combined heat and power (CHP) energy hubs work within the following heat load mode in the wintertime to supply the request for heat, and renewable energy has been often restricted in the unified energy network (UEN) markets. The power Internet of Things (PIoTs) has enabled UEN to transmit data increasingly frequently. As a result of flexible connections among various UEN networks, renewable energy increases its accommodation capacity considerably. Thus, the purpose of the study is to optimize UEN within the backdrop of PIoTs. According to the impact of PIoTs on UEN, this paper develops the combined demand response (DR) process and the layout of the important parts of UEN. Afterward, this study develops a bi-level economic dispatching process based on the cyber-physical systems of PIoTs and UEN. In the dispatching process, the higher level optimizes the total UEN function; the lower level optimizes the demand-side equipment output and combined DR. Then, the gray wolf optimization scheme is used to solve the bi-level dispatch. Lastly, the standard UEN and the practical network have been used to verify the efficiency of the suggested process.
Read full abstract