Background Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra, leading to motor and non-motor symptoms. Atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP) and essential tremor (ET), present with overlapping clinical features, making differential diagnosis challenging. Conventional MRI has limitations in distinguishing PD from APS, necessitating advanced imaging techniques like diffusion tensor imaging (DTI) for more accurate diagnosis. Objectives This retrospective study aimed to evaluate the diagnostic accuracy of DTIin diagnosing PDand APS, particularly assessing its ability to differentiate these conditions from each other compared to conventional MRI. Additionally, the study sought to determine if DTI could diagnose PD in cases where conventional MRI results were normal, thereby highlighting the potential role of DTI in enhancing diagnostic precision in neurodegenerative disorders. Methodology The study included 30 patients with clinically diagnosed PD or APS who underwent both conventional MRI and DTI. Data were collected retrospectively. Imaging was performed using a Philips Multiva 1.5-Tesla MRI scanner (Philips, Amsterdam, Netherlands). DTI sequences were analyzed for fractional anisotropy (FA)values in the substantia nigra, superior cerebellar peduncle, middle cerebellar peduncle, transverse pontine fibers, and dentate nucleus. The FA values were compared with established normal values, and the findings from DTI were correlated with clinical diagnoses and conventional MRI results. Results Among the 30 patients, 53.3% were clinically diagnosed with PDand 46.7% with APS, including PSP and ET. Conventional MRI findings were normal in 46.7% of cases, indicating its limitations in detecting early or subtle changes in neurodegenerative disorders. In contrast, DTI identified abnormalities in 83.3% of cases, demonstrating its superior diagnostic sensitivity. DTI detected significant FA value reductions in the substantia nigra in PD patients (mean FA: 0.440), which is consistent with the degeneration of dopaminergic neurons characteristic of PD. In PSP patients, the superior cerebellar peduncle showed marked FA reductions (mean FA: 0.523), correlating with the clinical features of PSP, such as bradykinesia and postural instability. ET was identified by reduced FA values in the superior cerebellar peduncle and dentate nucleus, distinguishing it from other forms of parkinsonism. DTI was particularly effective in cases where conventional MRI results were inconclusive or normal, identifying early-stage PD and differentiating it from APS with greater accuracy. The study demonstrated a sensitivity of 95.8% and specificity of 93.8% for DTI in differentiating PD from APS compared to conventional MRI. Conclusion This study highlights DTI as a superior imaging modality for the early diagnosis and differentiation of parkinsonian disorders, particularly when conventional MRI results are inconclusive. DTI's ability to detect significant microstructural changes in specific brain regions, evidenced by FA value reductions, enhances diagnostic accuracy. Incorporating DTI into routine clinical practice is essential for accurate differentiation between PD and APS, facilitating better patient management.