Endometriosis, characterized by inflammatory lesions resembling endometrium outside the uterine cavity, induces chronic inflammation, anatomical changes and persistent pain. The expression of Interleukin 1beta (IL-1beta) is significantly associated with endometriosis, contributing to inflammatory process and fertility issues. Matrix metalloproteinase 9 (MMP-9) is crucial in the adhesion and angiogenesis of endometrial tissue. This study investigates the potential of Phyllanthus niruri L. in inhibiting MMP-9 and IL-1beta through molecular docking analysis. Molecular docking was performed using Discovery Studio Visualizer, Open Babel, PyRx and AutoDock Vina. The inhibitory activities of bioactive compounds on MMP-9 and IL-1beta were predicted. Biological activity and cytotoxicity were assessed using PASS and CLC-Pred respectively. Kaempferol and quercetin from P. niruri exhibited significant MMP-9 expression inhibitory activity. Search Tool for Interacting Chemicals (STITCH) analysis revealed interactions of quercetin and galangin with specific proteins involved in pathways related to endometriosis. Biological activity analysis indicated that quercetin, kaempferol, herbacetin and galangin show potential as MMP -9 expression inhibitors. CLC-Pred analysis suggested high cytotoxicity of kaempferol against glioma. Molecular docking results showed quercetin's potential as an MMP-9 inhibitor and galangin's potential as an IL-1 beta inhibitor. These findings support the therapeutic potential of P. niruri for endometriosis, providing insights for further research in developing innovative therapies targeting endometriosis-related inflammation and angiogenesis.