We have investigated the effects of hyperthermia (HT) on cell proliferation and telomerase activity of human hematopoietic stem cells (HSCs) and compared with human leukemic cell lines (TF-1, K562 and HL-60). The cells were exposed to HT at 42 and 43 °C up to 120 min. The cells were incubated at 37 °C for 96 h. Then the cells were collected and assayed for cell proliferation, viability, telomerase activity, and terminal restriction fragment (TRF) lengths. The enzyme activity from HSCs was decreased up to 68.6 at 42 and 85.1 % at 43 °C for 120 min. This inhibition in leukemic cells was up to 28.9 and 53.6 % in TF-1; 53 and 63.9 % in K562; 45.2 and 61.1 % in HL-60 cells. The treated cells showed TRF lengths about 5.3 kb for control HL-60 cells, 5.0 kb for HL-60 cells treated at 42 and 4.5 kb at 43 °C for 120 min. In HSCs, the TRF length was about 4.5 kb for untreated cells and 4.0-4.5 kb for treated cells at 42 and 43 °C for 120 min. The time response curves indicated that, inhibition of the enzyme activity in leukemic cells was dependent to the time of exposure to HT. But in HSCs, the inhibition was reached to steady state at 15 min exposure to 43 °C heat stress. TRF length was constant at treated two types of cells, which implies that in cells subjected to mild HT no telomere shortening was observed.