The early abstinence period is a crucial phase in alcohol use disorder (AUD) in which patients have to find a new equilibrium and may start recovery, or conversely, relapse. However, the changes in brain functions during this key period are still largely unknown. We set out to study longitudinal changes in large-scale brain networks during the early abstinence period using resting-state scans. We scanned AUD patients twice in a well-controlled inpatient setting, with the first scan taking place shortly after admission and the second scan 4 weeks (±9 days) later near the end of the treatment period. We studied 37 AUD patients (22 males) and 27 healthy controls (16 males). We focused on three networks that are affected in AUD and underly core symptom dimensions in this disorder: the frontoparietal networks (left and right FPN) and default mode network (DMN). Both the whole brain and within network connectivity of these networks were studied using dual regression. Finally, we explored correlations between these brain networks and various neuropsychological and behavioral measures. In contrast to the controls (Z = -1.081, p = 0.280), the AUD patients showed a decrease in within left FPN connectivity (Z = -2.029, p = 0.042). However, these results did not survive a strict Bonferroni correction. The decrease in left FPN connectivity during the early abstinence period in AUD may reflect an initially upregulated FPN, which recovers to a lower resting-state connectivity level during subsequent weeks of abstinence. The AUD patients showed a trend for a positive association between the change in left FPN connectivity and trait anxiety (rs = 0.303, p = 0.068), and a trend for a negative association between the change in left FPN connectivity and delay discounting (rs = -0.283, p = 0.089) (uncorrected for multiple comparisons). This suggests that the FPN might be involved in top-down control of impulsivity and anxiety, which are important risk factors for relapse. Although there were no statistically significant results (after multiple comparison correction), our preliminary findings encourage further research into the dynamic neuroadaptations during the clinically crucial early abstinence period and could inform future study designs.
Read full abstract