Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug 5u exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS. The active compound 6a released from 5u covalently binds to Cys475 and Sec498 sites on TrxR1, resulting in inhibition on TrxR1 activity, which led to redox homeostasis disorder, and caused apoptosis and ferroptosis. Moreover, prodrug 5u exhibited significant antitumor efficiency in nude mice and NSCLC organoids. Our results deliver ROS-triggered prodrug 5u as a novel TrxR1 inhibitor for the treatment of NSCLC and provide a promising strategy of ROS-activated prodrug for covalent compounds in cancer therapy.
Read full abstract