Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed. The gelatin methacryloyl is functionalized with phenylboronic acid groups to enhance drug loading capacity and enable dual stimuli-responsive behavior, while the incorporation of oxidized hyaluronic acid further improves the adhesive properties. The prepared hydrogel exhibits an enhanced drug loading capacity for diol-containing drugs, pH- and reactive oxygen species (ROS)-responsive behaviors, excellent radical scavenging efficiency, potent antibacterial activity, and favorable biocompatibility. Furthermore, the hydrogel shows a beneficial protective efficacy on NP cells within an in vitro oxidative stress microenvironment. The in vivo results demonstrate the hydrogel's excellent therapeutic effect on treating IDD by maintaining water retention, restoring disc height, and promoting NP regeneration, indicating that this hydrogel holds great potential as a promising therapeutic approach for regulating the microenvironment and alleviating the progression of IDD.
Read full abstract