Tieguanyin tea, a renowned oolong tea, is one of the ten most famous teas in China. The Squamosa Promoter Binding Protein (SBP)-box transcription factor family, widely present in plants, plays a crucial role in plant development, growth, and stress responses. In this study, we identify and analyze 22 CsSBP genes at the genome-wide level. These genes were distributed unevenly across 11 chromosomes. Using Arabidopsis thaliana and Solanum lycopersicum L. as model organisms, we constructed a phylogenetic tree to classify these genes into six distinct subfamilies. Collinearity analysis revealed 20 homologous gene pairs between AtSBP and CsSBP, 21 pairs between SiSBP and CsSBP, and 14 pairs between OsSBP and CsSBP. Cis-acting element analysis indicated that light-responsive elements were the most abundant among the CsSBP genes. Protein motif, domain, and gene architecture analyses demonstrated that members of the same subgroup shared similar exon–intron structures and motif arrangements. Furthermore, we evaluated the expression profiles of nine CsSBP genes under light, shade, and cold stress using qRT-PCR analysis. Notably, CsSBP1, CsSBP17, and CsSBP19 were significantly upregulated under all three stresses. This study provides fundamental insights into the CsSBP gene family and offers a novel perspective on the mechanisms of SBP transcription factor-mediated stress responses, as well as Tieguanyin tea’s adaptation to environmental variations.
Read full abstract