Concrete box girder bridges exhibit mid- and high-frequency (> 20 Hz) dynamic responses due to train excitations, which result in problems of noise radiation and track deterioration. This study presents a numerical model for box girder vibration prediction. Significant attention is focused on the mid- and high-frequency responses via introduction of a detailed track/bridge subsystem model. A hammer impact test was used to determine the model parameters. The model was then validated using a homologation test. The results show that the wheel/rail force and box girder mobility are the two principal factors that influence box girder vibration spectral characteristics and amplitudes. The box girder responses at cross-sections with similar dynamic characteristics vary little, as they increase moderately with the train speed. The application of a fastening system with low stiffness and high damping can effectively reduce box girder vibration. However, the elastic modulus and damping of the cement–asphalt mortar, and the thickness of the track slab and bearing base exert the smallest influences on the vibrations. The box girder slab thickness should be designed appropriately because its dynamic behavior is closely associated with the slab characteristics.
Read full abstract