Identifying the vital states of trapped survivors during post-disaster rescue missions can result in improved rescue strategies and provide injury pre-diagnosis information. The most effective rescue method is the use of bio-radar based non-contact measurements. Presently, bio-radar techniques focus on detecting and locating. Herein, a method to identify vital states with an ultra-wideband bio-radar is proposed, while simulating a trapped condition with Beagle dogs. This investigation revealed three vital stages under the trapped condition: normal, transitioning, and agonal stages. Upon entering the transitioning stage, the heartrates were apparently high, and the respiratory rates increased sharply. The temperatures dropped rapidly once passing this stage. In particular, the respiratory waveforms from the bio-radar frequently change from a normal sine like curve to an “M” like curve within the transitioning stage. The accurate beginning and ending of the transitioning stage are defined by a newly proposed indicator of relative occurrence frequency. Pathological observations indicated that the fragmentation of lamellar bodies within type II alveolar cells caused the insufficiency of the lung surfactant, and further resulted in the occurrence of the “M” like curves. This pioneering work realizes the vital states identification only using a non-contact ultra-wideband bio-radar, thereby enables to infer the health conditions, life expectancy, and appropriate subsequent treatment of victims in the trapped condition. Therefore, it has the potential to promote the welfare of post-disaster trapped human victims.