Chronic infection in the cystic fibrosis (CF) lung is characterized by Pseudomonas aeruginosa strains that overproduce the mucoid exopolysaccharide, alginate. Previous experiments have shown that long-term survival of P. aeruginosa in the CF lung may be facilitated by increased adherence and decreased invasion of respiratory epithelial cells. Therefore, mucoid and nonmucoid clinical isolates of P. aeruginosa were assayed for their ability to associate with and invade the CF respiratory epithelial cell line, CF/T43. Association assays and gentamicin exclusion assays demonstrated that mucoid P. aeruginosa associates with and invades CF/T43 cell monolayers significantly less than nonmucoid P. aeruginosa strains (P =. 004,. 02) . Fluorescence microscopy invasion assays confirmed these results. The differences in association and invasion by the P. aeruginosa strains were not due to differences in lipopolysaccharide phenotype or cytotoxicity for CF/T43 respiratory epithelial cells. Exogenous bacterial alginate had no effect on the invasion of CF respiratory epithelia by a nonmucoid strain. Invasion assays with the wild-type P. aeruginosa strain PAO1 and isogenic algU and mucA mutant strains failed to show differences in invasion (P =. 25). We conclude that (i) mucoid P. aeruginosa isolates associate with and invade CF/T43 respiratory epithelial cells with less efficiency than nonmucoid P. aeruginosa, (ii) these differences are not due to variations in lipopolysaccharide phenotype between strains, (iii) neither exogenous nor endogenous alginate affects the ability of P. aeruginosa to invade CF/T43 respiratory epithelial cells, and (iv) invasion of CF/T43 respiratory epithelial cells by a laboratory reference strain of P. aeruginosa does not appear to be regulated by AlgU.
Read full abstract