A copper-containing nitrite reductase (Cu-NiR) was purified to homogeneity from the denitrifying fungus Fusarium oxysporum. The enzyme seemed to consist of two subunits with almost the same M(r) value of 41,800 and contains two atoms of copper per subunit. The electron paramagnetic resonance spectrum showed that both type 1 and type 2 copper centers are present in the protein, whereas the visible absorption spectrum exhibited a sole and strong absorption maximum at 595 nm, causing a blue but not green color. The reaction product due to the Cu-NiR was mainly nitric oxide (NO), whereas a stoichiometric amount of nitrous oxide (N2O) was formed when cytochrome P-450nor was further added to the assay system. Therefore, the denitrifying (N2O forming) nitrite reductase activity that we had detected in the cell-free extract of the denitrifying cells (Shoun, H., and Tanimoto, T. (1991) J. Biol. Chem. 266, 11078-11082) could be reconstituted upon combination of the purified Cu-NiR and P-450nor. The Km for nitrite and specific activity at pH 7.0 were estimated as 49 microM and 447 mumol NO.min-1.mg protein-1, respectively. Its activity was strongly inhibited by cyanide, carbon monoxide, and diethyldithiocarbamate, whereas enormously restored by the addition of cupric ions. An azurin-like blue copper protein (M(r) = 15,000) and a cytochrome c were also isolated from the same fungus, both of which together with cytochrome c of the yeast Saccharomyces cerevisiae were effective in donating electrons to the fungal Cu-NiR. The result suggested that the physiological electron donor of the Cu-NiR is the respiratory electron transport system. The intracellular localization of Cu-NiR was investigated, and it was suggested that the Cu-NiR localizes in an organelle such as mitochondrion. These findings showed the identity in many aspects between the fungal nitrite reductase and bacterial dissimilatory Cu-NiRs. This is the first isolation of dissimilatory NiR from a eukaryote.