Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were observed in the performance of the two motion models considered. Superior image SNR and contrast were seen using the affine respiratory motion model in combination with the diastole cardiac bin in comparison to the use of the whole cardiac cycle. In contrast, when simultaneously correcting for cardiac beating and respiration, the elastic respiratory motion model outperformed the affine model. In this context, four cardiac bins associated with eight respiratory amplitude bins seemed to be adequate. Considering the compensation of respiratory motion effects only, both affine and elastic based approaches led to an accurate resizing and positioning of the myocardium. The use of the diastolic phase combined with an affine model based respiratory motion correction may therefore be a simple approach leading to significant quality improvements in cardiac PET imaging. However, the best performance was obtained with the combined correction for both cardiac and respiratory movements considering all the dual-gated bins independently through the use of an elastic model based motion compensation.