The identification and detection of microalgae are essential for the development and utilization of microalgae resources. Traditional methods for microalgae identification and detection have many limitations. Herein, a Feature-Enhanced YOLOv7 (FE-YOLO) model for microalgae cell identification and detection is proposed. Firstly, the feature extraction capability was enhanced by integrating the CAGS (Coordinate Attention Group Shuffle Convolution) attention module into the Neck section. Secondly, the SIoU (SCYLLA-IoU) algorithm was employed to replace the CIoU (Complete IoU) loss function in the original model, addressing the issues of unstable convergence. Finally, we captured and constructed a microalgae dataset containing 6300 images of seven species of microalgae, addressing the issue of a lack of microalgae cell datasets. Compared to the YOLOv7 model, the proposed method shows greatly improved average Precision, Recall, mAP@50, and mAP@95; our proposed algorithm achieved increases of 9.6%, 1.9%, 9.7%, and 6.9%, respectively. In addition, the average detection time of a single image was 0.0455 s, marking a 9.2% improvement.
Read full abstract