Big data storage management is one of the most challenging issues for Grid computing environments, since large amount of data intensive applications frequently involve a high degree of data access locality. Grid applications typically deal with large amounts of data. In traditional approaches high-performance computing consists dedicated servers that are used to data storage and data replication. In this paper we present a new mechanism for distributed and big data storage and resource discovery services. Here we proposed an architecture named Dynamic and Scalable Storage Management (DSSM) architecture in grid environments. This allows in grid computing not only sharing the computational cycles, but also share the storage space. The storage can be transparently accessed from any grid machine, allowing easy data sharing among grid users and applications. The concept of virtual ids that, allows the creation of virtual spaces has been introduced and used. The DSSM divides all Grid Oriented Storage devices (nodes) into multiple geographically distributed domains and to facilitate the locality and simplify the intra-domain storage management. Grid service based storage resources are adopted to stack simple modular service piece by piece as demand grows. To this end, we propose four axes that define: DSSM architecture and algorithms description, Storage resources and resource discovery into Grid service, Evaluate purpose prototype system, dynamically, scalability, and bandwidth, and Discuss results. Algorithms at bottom and upper level for standardization dynamic and scalable storage management, along with higher bandwidths have been designed.
Read full abstract