The heterodimer, XeAr, is a classic example of a weakly bound van der Waals molecule, which has a variety of accessible bound excited states that exhibit complex interactions. In this study, XeAr has been investigated in the 77,500–81,500 cm−1 region using a combination of Resonance Enhanced Multi-Photon Ionization (REMPI) spectroscopy and Velocity Map Imaging (VMI). By monitoring REMPI and photodissociative product channels across the spectrum, several novel excited states, product channels, excited state symmetries and lifetimes, as well as highly localized perturbations were observed and characterized, including the first VMI study of Ar* dissociating from XeAr Rydberg states accessed by two-photon excitation. In this work we have analyzed 38 vibronic bands representing nine different electronic transitions, and we provide new assignments for two 0+←0+ electronic transitions dissociating to the Xe* 5d [3/2]02 (ca. 80,323 cm−1) and Xe* 5d [7/2]03 (ca. 80,970 cm−1) limits. Several new predissociation product channels were identified at the two- and three-photon levels, including production of Xe* 5p[5/2]3, Xe* 6s'[1/2]o1, Xe* 6p[1/2]1, Ar* 4p[1/2]0, Ar* 4p'[3/2]1, Ar* 4p'[1/2]1, and Ar* 4p[5/2]3. Using the multidimensional analysis offered by VMI, we explore interesting photophysics whereby a resonant state that is reached after absorbing two photons can predissociate to yield Xe*, but which also can absorb a 3rd photon, yielding super-excited Ar*Xe that predissociates to Ar* limits. The ground state dissociation energy for XeAr was determined to be D0 = 114.4 ± 2.7 cm−1, in excellent agreement with previous measurements.