We examine the phenomenological implications at colliders for the existence of higher-derivative gravity terms as extensions to the Randall-Sundrum model. Such terms are expected to arise on rather general grounds, e.g., from string theory. In 5-d, if we demand that the theory be unitary and ghost free, these new contributions to the bulk action are uniquely of the Gauss-Bonnet form. We demonstrate that the usual expectations for the production cross section and detailed properties of graviton Kaluza-Klein resonances and TeV-scale black holes can be substantially altered by existence of these additional contributions. It is shown that measurements at future colliders will be highly sensitive to the presence of such terms.
Read full abstract