Cylindrical shells containing complex elastic coupling systems are the main structural form of underwater vehicles. Therefore, in this paper, the vibroacoustic radiation problem of underwater cylindrical shells containing complex internal elastic coupling systems is studied. Firstly, the dynamics model of the complex elastic coupled system is established through the method of integrated conductivity. The sound pressure distribution law and the general magnitude relationship between the performance index of hydroacoustic radiation and vibration isolation are investigated through numerical simulation. A strategy of global sensitivity analysis and related parameter optimization is carried out, by applying the Sobol’ method to the dynamics model. It could be concluded that the main flap of sound pressure at low and medium frequencies appears in the direction of the excitation force or the perpendicular to the excitation force, the magnitudes correspondence between the vibration level drop—power flow—hydroacoustic radiation at low frequencies can be expressed as a relatively simple function, and the vibroacoustic transmission of the system at lower order resonance frequencies is dominated by the parameter configuration of the vibration isolation device, while at higher frequencies is more influenced by the modalities of the base structure. The transfer power flow and the level drop are used as objective functions to optimise the acoustic radiation index of the coupled system, with the best results obtained when the transfer power flow and the level drop are used together as objective functions.
Read full abstract