Along-track multichannel synthetic aperture radar is usually used to achieve ground moving target detection and imaging. Nevertheless, there is a design dilemma between azimuth high resolution and wide swath (HRWS). To solve this problem in HRWS mode, we introduce a virtual multichannel (VMC) scheme. For each virtual channel, the low real pulse repetition frequency (PRF) improves the ability of resolving range ambiguity for wide-swath, and the high virtual PRF improves the capability of resolving Doppler ambiguity for azimuth high resolution. For multiple virtual channels, strong ground clutter is eliminated by the joint VMC processing. Furthermore, a detailed signal model of a moving target in the virtual channel is given, and the special false-peak effect in the azimuthal image is analyzed. Moreover, we propose a novel ground moving target processing method based on the VMC scheme and the clutter suppression interferometry (CSI) technique, which is called VMC-CSI. The integration of detection, location, velocity estimation, and imaging for ground moving targets can be achieved. Accounting for the unresolved main peak and false peak for a moving target, in the VMC-CSI method, we adopt a two-step scheme to estimate the radial velocity and along-track velocity, namely, rough estimation and precise estimation. Meanwhile, considering the same interferometric phases of the main peak and the false peak, we use false peaks first for the robustness of initial azimuth location estimation and remove false peaks afterward. Numerical simulations are provided for testing the effect of the false peak and the effectiveness of VMC-CSI.