Difference limens for fundamental frequency (F0), F0DLs, are usually small for complex tones containing low harmonics that are resolved in the auditory periphery, but worsen when the rank of the lowest harmonic increases above about 6–8 and harmonics become less resolved. The traditional explanation for this, in terms of resolvability, has been challenged and an alternative explanation in terms of harmonic rank was suggested. Here, to disentangle the effects of resolvability and harmonic rank the complex tones were presented either diotically (all harmonics to both ears) or dichotically (even and odd harmonics to opposite ears); the latter increases resolvability but does not affect harmonic rank. F0DLs were measured for 14 listeners for complex tones containing harmonics 6–10 with F0s of 280 and 1400 Hz, presented diotically or dichotically. For the low F0, F0DLs were significantly lower for the dichotic than for the diotic condition. This is consistent with a benefit of increased resolvability of harmonics for F0 discrimination and extends previous results to harmonics as low as the sixth. In contrast, for the high F0, F0DLs were similar for the two presentation modes, adding to evidence for differences in pitch perception between tones with low-to-medium and very-high frequency content.
Read full abstract