Zero-dimensional (0D) organic-inorganic Cu(I)-based halides have garnered significant attention due to their low toxicity, efficient emission, and moderate fabrication conditions. However, the challenge remains in developing stable and efficient 0D hybrid Cu(I)-based halides for effective X-ray imaging. In this study, a yellow-emitting 0D hybrid copper halide, (ETPP)2Cu2I4 (Ethyl triphenylphosphonium, ETPP), was successfully synthesized via a slow evaporation method. This compound demonstrated an impressive steady-state light yield of 23,200 photons/MeV under X-ray radiation and an ultralow detection limit of 150.9 nGyair s−1, approximately 35 times lower than the standard medical examination dosage. Utilizing a vacuum-filtration method, we fabricated a flexible film that outperforms traditional methods and achieved an exceptional X-ray imaging resolution of 16.0 lp/mm. This study introduces a novel approach to fabricating high-performance X-ray imaging scintillators based on 0D Cu-based halides, showcasing excellent scintillation performance and stability for non-destructive testing.