In this study, we use high-throughput quantitative polymerase chain reaction approaches to comprehensively assess the effects of agricultural land-use change on the antibiotic resistome of agricultural runoffs after rainfalls in Lake Tai Basin. For the first time in this region, our findings show that orchard runoffs harbored more diverse and abundant antibiotic resistance genes (ARGs) than traditional cropland runoffs. Network analysis demonstrated that orchard runoffs possessed a strong ability for ARG dissemination via horizontal gene transfer. These results suggest that residents might be exposed to a higher public health threat than before. Moreover, the present study confirmed that the rice–wheat rotation system plays a key role in regulating the soil antibiotic resistome profile. Using 16S rRNA high-throughput sequencing technology, this study clarified the relationships between the antibiotic resistome and soil microbiome composition. Finally, we discuss the key environmental factors driving changes in the soil antibiotic resistome. In summary, this study gives insight into the dissemination of environmental ARGs to the people living in the Lake Tai Basin.
Read full abstract