BackgroundPullorum disease is a serious problem in many countries. Caused by Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), it creates huge economic losses in the poultry industry. Although pullorum disease has been well-controlled in many developed countries, it is still a critical problem in developing countries. However, there is still a lack of information on S. Pullorum strains isolated from different regions and sources in China. The objective of this study was to supply the antimicrobial resistance patterns and clonal relationships of S. Pullorum from breeder chicken farms.MethodsIn this study, a total of 114 S. Pullorum strains recovered from 11 provinces and municipalities in China between 2020 and 2021 were selected. These 114 S. Pullorum strains were analyzed using whole genome sequencing (WGS). Antimicrobial resistance (AMR) was tested both by genotypic prediction using the WGS method and using disc diffusion to assess phenotypic AMR.ResultsThese 114 sequenced S. Pullorum strains were divided into three sequence types (STs), the dominant STs was ST92 (104/114). Further core genome multi-locus sequence typing analysis indicated that 114 S. Pullorum strains may have a close relationship, which could be clonally transmitted among different provinces and municipalities. Our results showed a close relationship between the S. Pullorum strains found in different regions, indicating these strains may have been transmitted in China a long time ago. Nearly all S. Pullorum strains 94.74% (n = 108) were resistant to at least one antimicrobial class, and 35.96% of the examined Salmonella strains were considered multiple drug resistant.ConclusionOverall, this study showed that S. Pullorum strains in China have a close genetic relationship in terms of antimicrobial resistance, suggesting widespread clonal transmission.
Read full abstract